News

HTOL Testing: A Key to Reliability in Electronics

HTOL Testing

High Temperature Operation Life (HTOL) testing is a cornerstone of reliability assessments in the electronics industry. By subjecting devices to elevated temperatures and electrical bias over extended periods, HTOL testing accelerates potential inherent failures, offering a predictive view of long-term performance and dependability. This technique is widely used for device qualification prior to product release and volume manufacturing, as well as for reliability monitoring throughout the product life cycle.
In addition to standard HTOL systems, a shorter-duration variation, Burn-In testing, is employed to screen for infant mortalities and conduct Early Life Failure Rate (ELFR) testing. These tests ensure that devices are capable of withstanding the harsh conditions they may encounter during their operational lifetime.

Advanced HTOL Testing Capabilities

At Reltech, we design and manufacture high-performance HTOL systems, including thermal chambers, HTOL (Burn-In) boards, driver boards, and advanced system software. Our systems are engineered to adhere to the JEDEC standard JESD22-A108 and other industry-specific protocols, ensuring reliability under a variety of conditions.

Our HTOL laboratory provides:

  • Multiple thermal chambers and numerous device test positions, enabling simultaneous qualifications at different temperatures and electrical stimuli.
  • HTOL board design and manufacturing for customized device testing.
  • Systems configured to deliver precise, device-specific bias voltages starting from +0.8V.
  • Advanced test vectors supporting up to 20MHz frequency and 8Mb depth.
  • Device-level temperature control for low-geometry devices (<65nm) and high-power components.
  • Real-time system and DUT monitoring with event logging for enhanced test insights.

These features make Reltech’s HTOL systems a reliable choice for accelerating device qualification processes and meeting stringent reliability monitoring requirements.

Accelerated Reliability Techniques with HTOL Testing

High Temperature Operating Life testing offers a comprehensive method for evaluating device reliability. By exposing components to elevated temperatures and increased electrical bias, HTOL replicates years of operational wear in a condensed timeframe. This accelerated aging process is invaluable for detecting failure points and assessing a device’s Mean Time Between Failures (MTBF).
During HTOL testing, devices are placed in controlled environments where temperatures exceed normal operating ranges. Simultaneously, electrical stresses are intensified, simulating extreme operational conditions. The combination of these factors helps uncover design or manufacturing flaws and provides insights into failure modes and wear-out mechanisms.

HTOL vs Burn-In Testing and Accelerated Life Testing (ALT)

When evaluating reliability, HTOL testing is often complemented by Burn-In testing and Accelerated Life Testing (ALT). While Burn-In testing focuses on early-stage failures, ALT incorporates additional variables such as humidity, vibration, and physical shock to simulate real-world conditions.

  • Burn-In testing vs HTOL: Both tests operate devices at high temperatures and voltages, but HTOL is designed for longer durations and provides a deeper analysis of device reliability under thermal and electrical stress.
  • Accelerated Life Testing (ALT) vs HTOL: ALT expands the scope of stress factors, making it suitable for devices that may face diverse environmental challenges.

The choice between these tests depends on the specific goals of the reliability assessment. For devices expected to perform in harsh environments, combining HTOL testing with Burn-In and ALT provides a holistic understanding of long-term performance.

Interpreting HTOL Results: Key Insights

Data collected from HTOL testing serves as a valuable resource for engineers. By monitoring parameters such as voltage, current, resistance, and visual indicators, manufacturers can determine a device’s Mean Time Between Failures (MTBF) and identify potential failure modes. This data also sheds light on wear-out mechanisms like solder joint fatigue, thermal damage, and electrical degradation, offering actionable insights to improve device reliability.

More News Articles

ESD

Introduction to ESD – Electrostatic Discharge

You may sometimes feel an electric shock when you touch another object. For example, when walking down a hotel corridor, you may get a small shock when you press the elevator button. These shocks, harmless to ourselves, are caused by a build-up of a static electric charge on our bodies that can reach several thousands of volts. The shock we…

אוטומציה

Industrial Automation: How Does It Work?

The industrial sector has always pursued automation options in an attempt to continually enhance processes and results. In today’s era, it can be confidently said that automation has never been more developed. The types of automation and the vast variety of its applications are relevant to many sectors and are involved in the production of nearly endless products. What is…

Admati Agencies is Proud to add MPI Corporation to its Product Line.

Admati Agencies is proud to add MPI Corporation to its product line. MPI is the world leading supplier of Thermo stream systems for both device and PCB characterization. The ThermalAir temperature products are a series of high capacity thermal air stream systems that are used for temperature testing, fast thermal cycling and device temperature characterization of components, hybrids, modules, PCBs,…

Laser Cutting Machines

Laser Cutting Machines: Unmatched Precision and Versatility

Laser cutting machines play a crucial role in modern manufacturing processes, enabling the cutting, engraving, and marking of raw materials with exceptional precision. Using focused laser beams, these machines execute complex designs and tasks that would be challenging or impossible with traditional cutting methods. Laser cutting machines are utilized across industries such as aerospace, automotive, electronics, and healthcare. Their high…

Open chat
Hello 👋
Can we help you?