News

HTOL Testing: A Key to Reliability in Electronics

HTOL Testing

High Temperature Operation Life (HTOL) testing is a cornerstone of reliability assessments in the electronics industry. By subjecting devices to elevated temperatures and electrical bias over extended periods, HTOL testing accelerates potential inherent failures, offering a predictive view of long-term performance and dependability. This technique is widely used for device qualification prior to product release and volume manufacturing, as well as for reliability monitoring throughout the product life cycle.
In addition to standard HTOL systems, a shorter-duration variation, Burn-In testing, is employed to screen for infant mortalities and conduct Early Life Failure Rate (ELFR) testing. These tests ensure that devices are capable of withstanding the harsh conditions they may encounter during their operational lifetime.

Advanced HTOL Testing Capabilities

At Reltech, we design and manufacture high-performance HTOL systems, including thermal chambers, HTOL (Burn-In) boards, driver boards, and advanced system software. Our systems are engineered to adhere to the JEDEC standard JESD22-A108 and other industry-specific protocols, ensuring reliability under a variety of conditions.

Our HTOL laboratory provides:

  • Multiple thermal chambers and numerous device test positions, enabling simultaneous qualifications at different temperatures and electrical stimuli.
  • HTOL board design and manufacturing for customized device testing.
  • Systems configured to deliver precise, device-specific bias voltages starting from +0.8V.
  • Advanced test vectors supporting up to 20MHz frequency and 8Mb depth.
  • Device-level temperature control for low-geometry devices (<65nm) and high-power components.
  • Real-time system and DUT monitoring with event logging for enhanced test insights.

These features make Reltech’s HTOL systems a reliable choice for accelerating device qualification processes and meeting stringent reliability monitoring requirements.

Accelerated Reliability Techniques with HTOL Testing

High Temperature Operating Life testing offers a comprehensive method for evaluating device reliability. By exposing components to elevated temperatures and increased electrical bias, HTOL replicates years of operational wear in a condensed timeframe. This accelerated aging process is invaluable for detecting failure points and assessing a device’s Mean Time Between Failures (MTBF).
During HTOL testing, devices are placed in controlled environments where temperatures exceed normal operating ranges. Simultaneously, electrical stresses are intensified, simulating extreme operational conditions. The combination of these factors helps uncover design or manufacturing flaws and provides insights into failure modes and wear-out mechanisms.

HTOL vs Burn-In Testing and Accelerated Life Testing (ALT)

When evaluating reliability, HTOL testing is often complemented by Burn-In testing and Accelerated Life Testing (ALT). While Burn-In testing focuses on early-stage failures, ALT incorporates additional variables such as humidity, vibration, and physical shock to simulate real-world conditions.

  • Burn-In testing vs HTOL: Both tests operate devices at high temperatures and voltages, but HTOL is designed for longer durations and provides a deeper analysis of device reliability under thermal and electrical stress.
  • Accelerated Life Testing (ALT) vs HTOL: ALT expands the scope of stress factors, making it suitable for devices that may face diverse environmental challenges.

The choice between these tests depends on the specific goals of the reliability assessment. For devices expected to perform in harsh environments, combining HTOL testing with Burn-In and ALT provides a holistic understanding of long-term performance.

Interpreting HTOL Results: Key Insights

Data collected from HTOL testing serves as a valuable resource for engineers. By monitoring parameters such as voltage, current, resistance, and visual indicators, manufacturers can determine a device’s Mean Time Between Failures (MTBF) and identify potential failure modes. This data also sheds light on wear-out mechanisms like solder joint fatigue, thermal damage, and electrical degradation, offering actionable insights to improve device reliability.

More News Articles

Admati Agencies is Proud to add MPI Corporation to its Product Line.

Admati Agencies is proud to add MPI Corporation to its product line. MPI is the world leading supplier of Thermo stream systems for both device and PCB characterization. The ThermalAir temperature products are a series of high capacity thermal air stream systems that are used for temperature testing, fast thermal cycling and device temperature characterization of components, hybrids, modules, PCBs,…

פיני פוגו

Advantages and Disadvantages of Pogo Pin Connectors: A Comprehensive Analysis

Pogo pin connectors have become an essential component in modern electronics, providing a reliable and efficient solution for making temporary or semi-permanent electrical connections. These spring-loaded connectors are widely used in various applications, including consumer electronics, medical devices, industrial equipment, and test instrumentation. Their unique design allows them to maintain consistent electrical contact while withstanding repeated cycles of connection and…

מדריך מקיף לתקן האיכות במכשור רפואי

ISO 13485 – A Comprehensive Guide to the Quality Standard in Medical Devices

When it comes to medical devices, every mistake can make the difference between therapeutic success and a life-threatening failure. In an industry where there is no room for deviation, ISO 13485 serves as a critical line of defense. It defines what quality is, how to maintain it, and how to prove it at every stage of production. Whether it’s a…

Understanding Semiconductors

Understanding Semiconductors: Fundamental Principles and Industry Applications

Semiconductors are the foundation of modern electronics, enabling the functionality of everything from smartphones and computers to medical devices and industrial automation systems. These materials, which possess electrical properties between those of conductors and insulators, have revolutionized technology by allowing controlled electrical flow. Understanding the principles behind semiconductors and their diverse applications is essential for anyone involved in the fields…

Open chat
Hello 👋
Can we help you?