News

HTOL Testing: A Key to Reliability in Electronics

HTOL Testing

High Temperature Operation Life (HTOL) testing is a cornerstone of reliability assessments in the electronics industry. By subjecting devices to elevated temperatures and electrical bias over extended periods, HTOL testing accelerates potential inherent failures, offering a predictive view of long-term performance and dependability. This technique is widely used for device qualification prior to product release and volume manufacturing, as well as for reliability monitoring throughout the product life cycle.
In addition to standard HTOL systems, a shorter-duration variation, Burn-In testing, is employed to screen for infant mortalities and conduct Early Life Failure Rate (ELFR) testing. These tests ensure that devices are capable of withstanding the harsh conditions they may encounter during their operational lifetime.

Advanced HTOL Testing Capabilities

At Reltech, we design and manufacture high-performance HTOL systems, including thermal chambers, HTOL (Burn-In) boards, driver boards, and advanced system software. Our systems are engineered to adhere to the JEDEC standard JESD22-A108 and other industry-specific protocols, ensuring reliability under a variety of conditions.

Our HTOL laboratory provides:

  • Multiple thermal chambers and numerous device test positions, enabling simultaneous qualifications at different temperatures and electrical stimuli.
  • HTOL board design and manufacturing for customized device testing.
  • Systems configured to deliver precise, device-specific bias voltages starting from +0.8V.
  • Advanced test vectors supporting up to 20MHz frequency and 8Mb depth.
  • Device-level temperature control for low-geometry devices (<65nm) and high-power components.
  • Real-time system and DUT monitoring with event logging for enhanced test insights.

These features make Reltech’s HTOL systems a reliable choice for accelerating device qualification processes and meeting stringent reliability monitoring requirements.

Accelerated Reliability Techniques with HTOL Testing

High Temperature Operating Life testing offers a comprehensive method for evaluating device reliability. By exposing components to elevated temperatures and increased electrical bias, HTOL replicates years of operational wear in a condensed timeframe. This accelerated aging process is invaluable for detecting failure points and assessing a device’s Mean Time Between Failures (MTBF).
During HTOL testing, devices are placed in controlled environments where temperatures exceed normal operating ranges. Simultaneously, electrical stresses are intensified, simulating extreme operational conditions. The combination of these factors helps uncover design or manufacturing flaws and provides insights into failure modes and wear-out mechanisms.

HTOL vs Burn-In Testing and Accelerated Life Testing (ALT)

When evaluating reliability, HTOL testing is often complemented by Burn-In testing and Accelerated Life Testing (ALT). While Burn-In testing focuses on early-stage failures, ALT incorporates additional variables such as humidity, vibration, and physical shock to simulate real-world conditions.

  • Burn-In testing vs HTOL: Both tests operate devices at high temperatures and voltages, but HTOL is designed for longer durations and provides a deeper analysis of device reliability under thermal and electrical stress.
  • Accelerated Life Testing (ALT) vs HTOL: ALT expands the scope of stress factors, making it suitable for devices that may face diverse environmental challenges.

The choice between these tests depends on the specific goals of the reliability assessment. For devices expected to perform in harsh environments, combining HTOL testing with Burn-In and ALT provides a holistic understanding of long-term performance.

Interpreting HTOL Results: Key Insights

Data collected from HTOL testing serves as a valuable resource for engineers. By monitoring parameters such as voltage, current, resistance, and visual indicators, manufacturers can determine a device’s Mean Time Between Failures (MTBF) and identify potential failure modes. This data also sheds light on wear-out mechanisms like solder joint fatigue, thermal damage, and electrical degradation, offering actionable insights to improve device reliability.

More News Articles

עיבוד שבבי CNC

What Are the Key Considerations in Selecting Cutting Tools for CNC Machining?

CNC machining is one of the core processes in modern industrial manufacturing, enabling precise, fast, and efficient production of parts and products across various industries. This process includes cutting, drilling, grinding, and material removal from different raw materials using precise tools operated by computer-controlled machines. One of the most influential factors affecting the final quality in CNC machining is selecting…

אבטחת איכות

What is Quality Control and How Does It Lead to Quality Assurance?

Quality Control (QC) is a vital component in the quality management fabric of any manufacturing company. Its purpose is to ensure that the final products meet the required standards and specifications. At our company, we conduct rigorous quality control throughout all our production processes. A Closer Look at Quality Control in Various Processes Machining: In CNC machining, quality control involves…

PCB מעגלים מודפסים

What Are the Criteria for Selecting Materials for PCB Production in Extreme Environmental Conditions?

Printed Circuit Boards (PCBs) are essential components in any electronic system, providing the foundation for connecting and supporting electronic components. When a PCB is required to function in extreme environmental conditions—such as high temperatures, increased humidity, radiation, or exposure to harsh chemicals—selecting the appropriate materials becomes a key challenge. Proper material selection ensures the board’s durability over time and maintains…

Thank You Everyone

We wanted to say a quick thank you to everyone who came and visited our Admati Seminar at the Crown Plaze City Center in TLV. Thanks to you we had another great seminar with many attendees and great experience. We are sure you all had a great time and made some new connections. Here are some great photos from the…

Open chat
Hello 👋
Can we help you?